

A Series of Tetrahomodioxacalix[4]biscrown-n. Syntheses, Crystal Structures, and Metal **Binding Abilities**

Kwanghyun No,*,† Ju Han Bok,‡ Il Hwan Suh,§ Sang Ook Kang,§ Jaejung Ko,§ Kye Chun Nam,I and Jong Seung Kim*,‡

Department of Chemistry, Sookmyung Women's University, Seoul 140-742, Korea, Department of Chemistry, Dankook University, Seoul 140-714, Korea, Department of Chemistry, Korea University, Chochiwon 339-700, Korea, and Department of Chemistry, Chonnam National University, Kwangju 550-757, Korea

jongskim@dankook.ac.kr

Received May 26, 2004

Abstract: A series of novel tetrahomodioxacalix[4]biscrowns with crown-2, crown-3, crown-4, crown-5, and crown-6 units were synthesized. Conformations of each product are dependent on the base used and their conformation stabilities. All conformations were proven by NMR spectra and/or X-ray crystal structures. The 1,3-alternate homodioxacalix[4]biscrown-4 (4b) shows the best selectivity for K⁺, whereas the 1,3-alternate homodioxacalix[4]crown-5 (5) does for Cs⁺. Those selectivities are attributable to electrostatic interaction between the metal ion and the crown ring, as well as a π -metal complexation. However, the C-1,2-alternate conformation does not take the metal ions regardless of the crown species as a result of steric hindrance from the methylene bridge of an ArCH₂Ar unit.

Calixarenes are synthetic macrocycles that are available in a variety of ring sizes. They have long been of interest both as complexation hosts for ions and molecules and as frameworks for elaborating more complex structures.¹⁻³ In contrast to the calix[4]arenes, homooxacalix[4]arenes, which contain extra oxygen atoms in the macrocyclic ring, have received little attention, mainly because they can only be synthesized in relatively low

- § Korea University.
- Chonnam National University.

(3) (a) Kim, J. S.; Lee, W. K.; Kim, J. G.; Suh, I. H.; Yoon, J. Y.;
Lee, J. H. *J. Org. Chem.* **2000**, *65*, 7215. (b) Böhmer, V. *Angew. Chem.*, *Int. Ed. Engl.* **1995**, *34*, 713.

yields.^{4–6} Tetrahomodioxa *p-tert*-butylcalix[4]arene was prepared by Gutsche in 44% yield by dehydration of a bishydroxymethylated dimer of *p-tert*-butylphenol, which was synthesized by a multistep reaction starting from the bromination of *p*-tert-butylphenol.⁶ There have only been limited studies on the solution conformations, solidstate structures, and complexation behavior of homooxacalix[4]arenes.⁷⁻¹⁰ No and Kim reported that there are five conformations in tetrahomodioxacalix[4]arene with appropriate nomenclature (cone, partial cone, C-1,2alternate, COC-1,2 alternate, and 1,3-alternate) as represented in Figure S1 in Supporting Information.¹¹ Recently, we reported a solid-state structure of C-1,2alternate N.N-diethyl tetrahomodioxacalix[4]arene tetraamide complexing Pb²⁺ with the metal ion bound to the carbonyl oxygen atoms of two adjacent amide substituents and an aryl-alkyl ether oxygen of one of them, proven by X-ray structure.¹² For a corresponding monoalkyl amide, the conformation changed to 1,3-alternate because of intramolecular hydrogen bonding, resulting in weak binding of metal ions.12

Calix[4]crown molecules with appropriate crown loops attached to the calix[4]arene framework have been intensively studied for their selectivity in separating radioactive Cs⁺ ion from nuclear wastes.¹³ We reported the syntheses and X-ray crystal structures of tetrahomodioxacalix[4]biscrown-5 and crown-6 and their complexation abilities toward metal cations.14

In a continuation of the synthetic research on the tetrahomodioxacalix[4]biscrowns, the preparation of a series of the compounds with crown loop variation from

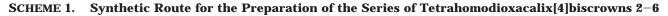
- (5) Bavoux, C.; Vocanson, F.; Perrin, M.; Lamartine, R. J. Inclusion Phenom. Mol. Recog. Chem. 1995, 22, 119.
 (6) Dhawan, B.; Gutsche, C. D. J. Org. Chem. 1983, 48, 1536.
- (7) (a) Thuèry, P.; Nierlich, M.; Vicens, J.; Masci, B. Acta Crystallogr. 2001, C57, 70. (b) Asfari, Z.; Harrowfield, J. M.; Ogden, M. I.; Vicens,

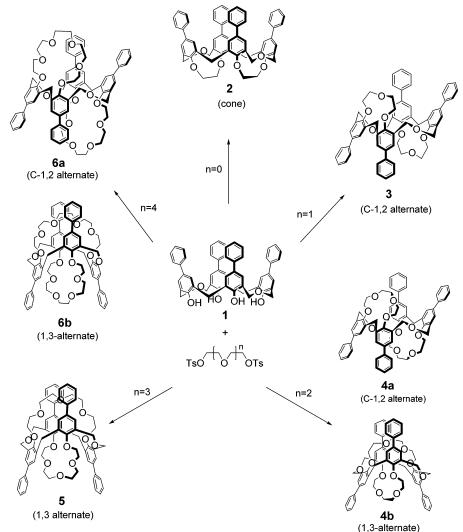
 J.; White, A. H. Angew. Chem., Int. Ed. Engl. 1991, 30, 854.
 (8) Harrowfield, J. M.; Ogden, M. I.; White, A. H. J. Chem. Soc., Dalton Trans. 1991, 979.

- (9) Marcos, P. M.; Ascenso, J. R.; Lamartine, R.; Pereira, J. L. C. Tetrahedron 1997, 53, 11791.
- (10) Felix, S.; Ascenso, J. R.; Lamartine, R.; Pereira, J. L. C. Synth. Commun. 1998, 28, 1793
- (11) No, K.; Lee, J. H.; Yang, S. H. Kim, M. J.; Kim, J. S. J. Org. Chem. 2002, 67, 3165.
- (12) No, K.; Kim, J. S.; Shon, O. J.; Yang, S. H.; Suh, I. H.; Kim, J. G.; Bartsch, R. A.; Kim, J. Y. *J. Org. Chem.* **2001**, *66*, 5976.
 (13) (a) Casnati, A.; Pochini, A.; Ungaro, R.; Ugozzoli, F.; Arnaud-

(14) No, K.; Chung, H. J.; Yu, H. J.; Yang, S. H.; Noh, K. H.; Thuery, P.; Vicens, J.; Kim, J. S. J. Inclusion Phenom. Macrocyclic Chem. 2003, 46.97.

10.1021/jo049107l CCC: \$27.50 © 2004 American Chemical Society Published on Web 08/27/2004


^{*} To whom correspondence should be addressed. Fax: +82-2-797-3277.


[†] Sookmyung Women's University. [‡] Dankook University.

^{(1) (}a) Gutsche, C. D. Calixarenes; Royal Society of Chemistry: Cambridge, 1989. (b) Gutsche, C. D. In *Synthesis of Macrocycles: Design of Selective Complexing Agents*, Izatt, R. M., Christensen, J. J., Eds.; Wiley: New York, 1987; p 93. (c) Gutsche, C. D. *Calixarenes Revisited*; Royal Society of Chemistry: Cambridge, 1998. (d) Böhmer, V.; McKervey, M. A. *Chem. Unserer Zeit*, **1991**, 195. (e) Gutsche, C. D. *Calixarenes, Monographs in Supramolecular Chemistry*; Stoddart, J. F., Ed.; Royal Society of Chemistry: Cambridge, 1989; Vol. 1. (f) Gutsche, C. D. In *Inclusion Compounds*; Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Eds.; Oxford University Press: New York, 1991;
 Vol. 4, pp 27–63. (g) Van Loon, J.-D.; Verboom, W.; Reinhoudt, D. N. Org. Prep. Proc. Int. 1992, 24, 437–462. (h) Ungaro. R.; Pochini, A. In Frontiers in Supramolecular Organic Chemistry and Photochemistry, (2) Calixarenes: A Versatile Class of Macrocyclic Compounds;

^{(4) (}a) Gutsche, C. D.; Dhawan, B.; No, K. H.; Muthukrishnan, R. Am. Chem. Soc. **1981**, 103, 3782. (b) Masci, B.; Saccheo, S. Tetrahedron Lett. 1993, 49, 10739.

Neu, F.; Fanni, S.; Schwing, M.-J.; Egberink, R. J. M.; de Jong, F.; Reinhoudt, D. N. J. Am. Chem. Soc. 1995, 117, 2767. (b) Kim, J. S.; Suh, I. H.; Kim, J. K.; Cho, M. H. J. Chem. Soc., Perkin Trans. 1 1998, 2307. (c) Kim, J. S.; Ohki, A.; Ueki, R.; Ishizuka, T.; Shimotashiro, T.; Maeda S. *Talanta* **1999**, *48*, 705–710. (d) Kim, J. S.; Ohki, A.; Cho, M. H.; Kim, J. K.; Ra, D. Y.; Cho, N. S.; Bartsch, R. A.; Lee, K. W.; Oh, W. Z. *Bull. Korean Chem. Soc.* **1997**, *18*, 1014. (e) Kim, J. S.; Lee, W. K.; Ra, D. Y.; Lee, Y. I.; Choi, W. K.; Lee, K. W.; Oh, W. Z. *Microchem. J.* **1998**, *59*, 464. (f) Kim, J. S.; Pang, J. H.; Yu, I. Y.; Lee, W. K.; Suh, I. H.; Kim, J. K.; Cho, M. H.; Kim, E. T.; D. Y. Ra. *J. Chem. Soc., Perkin* Trans. 21999, 837. (f) Asfari, Z.; Abidi, R.; Arnaud-Neu, F.; Vicens, J. *J. Inclusion Phenom.* **1992**, *13*, 163. (g) Asfari, Z.; Weiss, J.; Pappalardo, S.; Vicens, J. *Pure Appl. Chem.* **1993**, *65*, 585. (h) Hill, C.; Dozol, J.-F.; Lamare, V.; Rouquette, H.; Eymard, S.; Tournois, B.; Vicens, J.; Asfari, Z.; Bressot, C.; Ungaro, R.; Casnati, A. *J. Inclusion Phenom.* **1994**, *19*, 399

crown-2 to crown-6 was undertaken. We report here the synthetic methods, solid-state conformations, and metal ion encapsulation capabilities of these molecules.

Tetrahomodioxa *p*-phenylcalix[4]arene (1) was reacted with 2 equiv of poly(ethylene glycol) ditosylate and 2 equiv of M_2CO_3 (M = Li, Na, K, or Cs) in refluxing CH₃-CN for 48 h. After evaporation of solvent, the resulting crude residue was purified by flash chromatographic separation and/or recrystallization to produce homodioxacalix[4]biscrown derivatives 2-6 (Scheme 1; also see Table S1 in Supporting Information and Experimental Section). For homodioxacalix[4]biscrown-2 (2), 1 was refluxed with ethylene glycol ditosylate in acetonitrile in the presence of K_2CO_3 or Na_2CO_3 as the base to afford **2** in about 35% yield. However, with Li₂CO₃ and Cs₂CO₃, 2 was not produced even when the reaction time was extended up to 6 days. For **2**, AB doublets at δ 4.52 and 4.01 ($\Delta v = 204$ Hz) were observed in the ¹H NMR spectrum with a geminal coupling constant of 10.5 Hz corresponding to the dimethyleneoxy protons of the Ar CH_2OCH_2Ar bridge, as well as AB doublet peaks at δ 4.39 and 3.49 ($\Delta v = 360$ Hz) with a geminal coupling constant of 15.4 Hz for the methylene protons of Ar CH2-Ar. In the ¹³C NMR spectrum, two peaks were observed at 69.79 and 66.85 ppm for the ArCH2O bridged methyleneoxy carbons and one peak at 31.46 ppm for the Ar CH_2Ar bridge carbons. These NMR spectra for **2** indicate that two adjacent aryl moieties joined by a CH_2 group and CH_2OCH_2 group are in *syn* orientation, respectively. Judging from the NMR spectra, one can deduce that **2** is in the cone conformation in solution. The cone conformation in the solid state was evidenced by the X-ray crystal structure shown in Figure S2 in Supporting Information.

When 1 was refluxed with diethylene glycol ditosylate and K_2CO_3 in CH₃CN, homodioxacalix[4]biscrown-3 (3) was produced in 45% yield. Upon changing the base to Na₂CO₃, no significant difference in yield was noted. In the ¹H NMR spectrum of **3**, the dimethylenoxy protons of the ArCH₂OCH₂Ar bridge showed AB doublets at δ 4.81 and 4.23 ($\Delta v = 232$ Hz) with a geminal coupling constant of 11.2 Hz. In addition, a pair of doublet peaks for the methylene protons of Ar CH_2 Ar appeared at $\delta 4.69$ and 4.20 ($\Delta v = 196$ Hz) with a geminal coupling constant of 13.7 Hz. The ¹³C NMR spectrum showed one peak at 66.08 ppm for the methyleneoxy bridge carbons of Ar CH₂O and one peak at 27.69 ppm for the Ar CH₂Ar bridge carbons, implying that two adjacent benzene rings are in a syn orientation. The ¹H and ¹³C NMR spectra indicate that 3 is in the C-1,2-alternate conformation.

This conformation was verified in the solid-state structures (Figure S3, Supporting Information). Other reactions with variation of reaction time and solvents gave no other conformations.

For reaction of 1 with triethylene glycol ditosylate and K₂CO₃, two isomers of homodioxacalix[4]biscrown-4 (4a and 4b) were isolated in 49% and 11% yields, respectively. From their NMR spectra, 4a and 4b are assigned the C-1,2-alternate and 1,3-alternate conformations, respectively. In the ¹H NMR spectrum, the methylene protons of the ArCH₂Ar bridge for 4a showed an AB doublet at δ 5.21 and 3.41 ($\Delta v =$ 720 Hz) with a geminal coupling constant of 14.1 Hz. An AB pattern for the dimethyleneoxy protons of ArCH₂OCH₂Ar appeared at δ 4.60 and 4.48 ($\Delta v = 48$ Hz) with a geminal coupling constant of 10.5 Hz. The ¹³C NMR spectrum showed a single peak at 66.97 ppm for the Ar*C*H₂O bridge methyleneoxy carbons and one peak at 31.40 ppm for the Ar CH₂Ar bridge carbons implying that two adjacent benzene rings are in a *syn* orientation. For **4b**, the ¹H NMR spectrum exhibited for the dimethyeneoxy protons of the ArC H_2 OC H_2 Ar bridge an AB doublet at δ 4.76 and 4.47 ($\Delta v = 116$ Hz) with a geminal coupling constant of 13.3 Hz. In addition, a singlet peak for the methylene protons of ArCH₂Ar appeared at δ 4.09. The ¹³C NMR spectrum exhibited one peak at 65.03 ppm for the Ar CH₂O of bridge methyleneoxy carbons and one peak at 38.27 ppm for the Ar*C*H₂Ar bridge carbons, suggesting that two adjacent benzene rings are in an anti conformation. Therefore, it is certain that 4b is in the 1,3-alternate conformation in solution. This conformation was verified in the solid-state structure (Figure S4, Supporting Information). When the same reaction was performed with Cs_2CO_3 as the base, the yields of **4a** and **4b** were 46% and 20%, respectively. It is known that among five different conformations the C-1,2-alternate conformation is the most stable from a thermodynamics point of view.^{4b} So, in this cyclization, the thermodynamic control was driven to preferentially give the C-1,2-alternate conformation, although the 1,3-alternate provided a potassium ion selectivity.

Reaction of 1 with tetraethylene glycol ditosylate and K_2CO_3 or Cs_2CO_3 gave 1,3-alternate 5 as a sole product. The cyclization reaction with Cs_2CO_3 was complete in 24 h, whereas that using K_2CO_3 reached completion after 4 days. So, one might conclude that a template effect plays an important role in this cyclization reaction, which is in accordance with the binding ability for Cs^+ (Table 1, see below). The structure of 1,3-alternate 5 was verified by ¹H and ¹³C NMR spectroscopy and single-crystal X-ray structure determination.¹⁴

When **1** was refluxed with pentaethylene glycol ditosylate and Cs₂CO₃, the two products **6a** (C-1,2-alternate) and **6b** (1,3-alternate) were obtained in 30% and 26% yields, respectively. The structure of **6a** in solution was determined by ¹H and ¹³C NMR spectroscopy and in the solid structure by single-crystal X-ray structure determination.¹⁴ In the ¹H NMR spectrum of **6b**, the dimethyeneoxy protons of the ArC*H*₂OC*H*₂Ar bridge showed an AB doublet at δ 4.91 and 4.48 ($\Delta \nu$ = 172 Hz) with a geminal coupling constant of 12.0 Hz. A singlet for the methylene protons of ArC*H*₂Ar appeared at δ 4.24. The ¹³C NMR spectrum showed one peak at 65.92 ppm for

 TABLE 1. Extractabilities of 2–6 for Alkali Metal

 Picrates^a

	extractability for metal cations (%)							
compd	Na ⁺	\mathbf{K}^+	\mathbf{Rb}^+	Cs^+	NH_4^+	Ag^+	Sr^{2+}	Ba ²⁺
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4a	0.0	0.1	0.1	0.2	0.0	0.0	0.1	0.1
4b	20.1	85.2	77.0	24.2	40.0	44.9	10.8	15.0
5	1.2	7.4	22.8	73.0	0	17.0	1.6	0.8
6a	1.2	1.4	1.7	3.0	0.4	11.0	0.2	0.0
6b	14.5	28.0	37.5	75.3	29.6	55.0	14.6	25.4

 a Conditions: ligand, 0.10 mM/ClCH₂CH₂Cl; metal picrate, 0.20 mM in water. The intensities of the extracted picrates ($\lambda_{max}=378$ nm) from the water into the organic layer were measured. The extractability is an average value from three independent experiments.

the Ar CH_2O of bridge methyleneoxy carbons and one peak at 38.39 ppm for the Ar CH_2Ar bridge carbons, indicating that two adjacent benzene rings are in an anti conformation. Thus, it is estblished that **6b** is in the 1,3-alternate conformation.

To gain insight into the metal ion affinities of homodioxacalix[4]biscrown-based ligands, extractabilities of **2–6** for metal ions were determined by two-phase picrate extraction. The results are listed in Table 1. For **2** (conebiscrown-2) and **3** (C-1,2-alternate biscrown-3), extraction of metal picrate was undetectable. For **3**, the crown cavity would seem to be appropriate for Na⁺. However, there are two methylene units in ArCH₂Ar (C13 and C13' in Figure S3), which hinder complexation of any metal ions. This is consistent with the fact previously reported that C-1,2-alternate homodioxacalix[4]biscrown-6 exhibited a low extractability toward tested metal ions because of a steric hindrance caused by the methylene hydrogen atoms of the Ar*CH*₂Ar.¹⁴

In contrast, the 1,3-alternate **4b** selectively binds K⁺ over the other cations, whereas the C-1,2-alternate **4a** is an ineffective extractant. A Job plot experiment was performed to obtain the complexation ratio between **4b** and K⁺pic⁻ under conditions of invariant total concentration. A maximum at a molar fraction of [1]/([1] + [K⁺]) of about 0.5 was consistent with a 1:1 complex. This can be ascribed either to electrostatic repulsion between two metal ions or to an allosteric effect.^{3a} The K⁺ selectivity of the 1,3-alternate **4b** is due to size compatibility between the crown-4 ring, as well π -metal complexation between inverted aromatic units and K⁺.

The high extractabilities of 1,3-alternate homodioxacalix[4]biscrown-5 (5) and homodioxacalix[4]biscrown-6 (**6b**) for Cs⁺ can be explained with the same reasons, depending on the loop size and a possibility for π -metal complexation. In particular, regarding the Cs⁺ selectivity, 5 exhibits extractability higher than that of **6b** because the crown-6 size of **6b** is likely to be somewhat larger than the Cs⁺.

In conclusion, a series of five tetrahomodioxacalix[4]biscrowns with crown rings varing from crown-2 to crown-6 were synthesized. From the ¹H and ¹³C NMR spectra and crystal structures, their 3-D conformations were elucidated. Among the ligands, the 1,3-alternate homodioxacalix[4]biscrown-4 **4b** showed the best extraction for K⁺, and the 1,3-alternate homodioxacalix[4]biscrown-5 **5** did for Cs⁺. Those selectivities are attributable to electrostatic interaction between the metal ion and oxygen atoms of the crown loop, as well as a π -metal complexation between inverted phenoxy aromatic units and the target metal ion. By contrast, the C-1,2-alternate conformation does not accept metal ions regardless of the crown species, presumably because of steric hindrance from the methylene bridge of the ArCH₂Ar. Calculations for these compounds by molecular mechanics are now in progress and will be reported elsewhere.

Experimental Section

Synthesis. Syntheses for compounds 1, 5, and 6a have been reported.14

General Procedures for Homodioxacalix[4]biscrowns 2-6. Tetrahomodioxacalix[4]arene 1 (590 mg, 0.75 mmol), metal carbonate (1.50 mmol), and acetonitrile (100 mL) were stirred magnetically for 20 min in a 250-mL flask. Poly(ethylene glycol) ditosylate (1.55 mmol) was then added, and the mixture was refluxed for 2 days. After cooling to room temperature, the solvent was evaporated to dryness. The residue was acidified with dilute HCl, and the resulting mixture was extracted with CH₂Cl₂. The combined CH₂Cl₂ extracts were washed with water, dried over MgSO₄, and evaporated in vacuo. The residue was triturated with MeOH to give the product mixture, which was separated with flash chromatography or purified by recrystallization to afford the homooxacalix[4]biscrowns 2-6 as white solids. For new compounds, IR and NMR spectra are given in Supporting Information.

Homodioxacalix[4]biscrown-2 (2) was purified by recrystallization from chloroform/hexane and obtained in 35% yield: mp 304 °C (dec). Anal. Calcd for C₅₈H₄₈O₆: C, 82.83; H, 5.75. Found: C, 82.78; H, 5.65.

Homodioxacalix[4]biscrown-3 (3) was purified by recrystallization from chloroform, and a 45.5% yield was realized: mp 288 °C. Anal. Calcd for C₆₂H₅₆O₈: C, 80.15; H, 6.07. Found: C, 80.08; H, 6.15.

Homodioxacalix[4]biscrown-4 (4a) (C-1,2-alternate) was purified by flash chromatography with acetone/hexane (2:7) as eluent and recrystallization from methylene chloride/methanol to give a 49% yield of the title compound: mp 291 °C. Anal. Calcd for C₆₆H₆₄O₁₀: C, 77.93; H, 6.34. Found: C, 78.01; H, 6.25.

Homodioxacalix[4]biscrown-4 (4b) (1,3-alternate) was purified by flash chromatography with acetone/hexane(2:7) as

eluent and recrystallization from methylene chloride/methanol to provide a 20% yield: mp 150 °C. Anal. Calcd for C₆₆H₆₄O₁₀: C, 77.93; H, 6.34. Found: C, 78.01; H, 6.25.

Homodioxacalix[4]biscrown-6 (6b) (1,3-alternate) was purified by flash chromatography with acetone/hexane (1:2) as eluent and recrystallization from methylene chloride/methanol to give 26% yield of the title compound: mp 216 °C. Anal. Calcd for C74H80O14: C, 74.48; H, 6.76. Found: C, 74.41; H, 6.75.

Metal Picrate Extraction. Metal picrates were prepared by reaction of picric acid with the appropriate metal carbonate.¹⁰ To determine the extractability of the ligand for a metal picrate, an aqueous solution (2.0 mL) containing 0.20 mM metal picrate and a 1,2-dichlorethane solution (2.0 mL) of the extractant (0.10 mM) were shaken for 30 min at 25 °C. The concentration of picrate anion extracted from the aqueous phase into the organic layer was determined by UV spectrophotometry ($\lambda_{max} = 373$ nm). Three independent experiments were carried out for each combination of ligand and metal picrate. The extractabilities listed in Table 1 are average values.

X-ray Crystallography. Colorless single crystals 2, 3, and 4a were grown from ethyl acetate/methanol and were mounted and aligned on a CAD-4 diffractometer with graphite monochromated Mo K α radiation. The programs employed were SMART (Bruker, 1999); cell refinement, SMART; data reduction, SAINTplus (Bruker, 1999); program(s) used to solve structure, SHELXS97 (Sheldrick, 1997);¹⁶ structure refinement, SHELXL97 (Shjeldrick, 1997);¹⁶ and molecular graphics (Ortep-3 for windows (Farrugia, 1997).¹⁷

Acknowledgment. This work was supported by a Grant (no. KRF-2003-042-C20044) of Cooperative Research Project from Korea Research Foundation.

Supporting Information Available: Preparative procedures and analytical data for compounds 2-6 and additional figures and tables. This material is available free of charge via the Internet at http://pubs.acs.org.

JO049107L

(15) Bartsch, R. A.; Yang, I. W.; Jeon, E. G.; Walkowiak, W.;
Charewicz, W. A. J. Coord. Chem. 1992, 27, 75.
(16) Sheldrick, G. M. SHELX97, Programs for Crystal Structure

- Analysis; University of Goettingen: Germany, 1997.
 (17) Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565.
- (18) Sheldrick, G. M. SHELXS86. Acta Crystallogr. 1990, A46, 467.